Monday, March 23, 2009

The varied causes of depression

There is a new review article in CMAJ about the neurobiology of depression. And then there is the multi-part series on depression over at Neurotopia by the excellent Sci.

So I thought I'll link these for the benefit of my readers. While it may sound an oxymoron to do a review of a review, let me briefly summarize the review article.

The article lists three important contributing factors for depression. The first is genetics; the second childhood stress and the third ongoing or recent psychosocial stress. And of course different neurobiological mechanisms underlie all three factors.

To take by way of example, we have the famed monoamine theory of depression whereby low baseline serotonin (and norepenipherine) levels in the brain are held responsible for depressive symptoms. This hypothesis derives most evidence from the effects of anti-depressants on the brain. Now depression also has a genetic heritable component (this is apparent from twin studies); some of the heritability of depression can be explained by polymorphisms of various genes affecting the serotonin system, primary among them being the gene affecting Serotonin Transporter or SERT. thus, the underlying serotonin system can be treated as one biological system that has a strong genetic component.

To take by way of second example, consider the hypothalamic-pituitary-adrenal axis that is involved in response to stress. This system is abnormally developed if the child is exposed to stress in a critical developmental window. Experiments with rats and monkeys confirm that abnormal and stressful environment during early childhood, leads to abnormal functioning of this axis, that later pre-disposes to depression. thus, this HPA axis may be taken as a proxy for the component that is due to development and epigenetics.

To take by way of third example, consider the Brain Derived Neurotropic factor in the brain. This BDNF is responsible for survival of new neurons and for new synapse formation (synaptic plasticity) during adulthood; new neurons and new synapses help us to learn (by neurogenisis in the hippocampus), especially when the environment is stressful; now there are two polymorphisms of the gene coding for BDNF; the 'MET' allele cause reduced hippocampal volume at birth, hypoactivity in resting state in hippocampus, increased metabolism in hippocampus while learning and relatively poor hiipocampal dependent memory-function. From all this it is apparent that MET allele somehow leads to less synthesis of BDNF and thus low learning in hippocampus as a result of reduced neurogenesis / synaptogenesis. Now, the same MET allele also raises the risk of depressionand the mediating factor is the stress responsivity of the individual. Thus, the BDNF may mediate the sensitivity of a person to the same external psychosocial stress and might be very crucial via the gene-environment interaction effects. Also prolonged stress, which may result in prolonged BDNF secretions and thus lead to toxicity and opposite paradoxical effects may be another putative mechanism linkibng stress exposure in adulthood to underlying pathophysiology of reduced neurogenesis.

The above may seem too simplistic but it points us in the right direction- some neurobiological systems like the serotonin system may be largely genetic in nature and our treatment approaches based around this fact. Others like the HPA axis malfunctioning may be entirely environmental in their origin, and maybe preventive interventions like ensuring stress free childhood for all, should be the policy focus here. Depending on the plasticity of later HPA axis, therapy or medications may be the treatment options. Finally, other neurobiological systems involved, like the BDNF and stress sensitivity/over-exposure, may display complex gene-environment interactions and again knowing the nature of these systems will help us counter the symptoms using a combination of CBT/ medication.

Depression is definitely a much complex disorder to be completely understood on the basis of a single review article, or even a series of blog posts, , but the underlying neurobiological mechanisms and systems clearly indicate how genetics, environment (especially during critical developmental window) and and epigenetics (gene-environment interactions) are involved in its etiology and how different interventions and treatments taking these into account have to be developed.
aan het Rot, M., Mathew, S., & Charney, D. (2009). Neurobiological mechanisms in major depressive disorder Canadian Medical Association Journal, 180 (3), 305-313 DOI: 10.1503/cmaj.080697

Sphere: Related Content


Dr.rudford said...
This comment has been removed by a blog administrator.
Carla Pires said...

This "Dr. Rudford" is spamming this kind of replies in all depression related blog posts.

You can see that he posted the same comment in my blog (

The sad part, is that he bothers to read the article before posting his spam.

Thank you for sharing this insightful information about depression with all of us!

Lisa Walsh said...

And he has also done the same on my blog and not read the content of my blog.